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Patterns of particle distribution in multiparticle systems by random walks
with memory enhancement and decay

Zhi-Jie Tan, Xian-Wu Zou,* Sheng-You Huang, Wei Zhang, and Zhun-Zhi Jin
Department of Physics, Wuhan University, Wuhan 430072, China

~Received 30 January 2002; published 8 July 2002!

We investigate the pattern of particle distribution and its evolution with time in multiparticle systems using
the model of random walks with memory enhancement and decay. This model describes some biological
intelligent walks. With decrease in the memory decay exponenta, the distribution of particles changes from a
random dispersive pattern to a locally dense one, and then returns to the random one. Correspondingly, the
fractal dimensionD f ,p characterizing the distribution of particle positions increases from a low value to a
maximum and then decreases to the low one again. This is determined by the degree of overlap of regions
consisting of sites with remanent information. The second moment of the densityr (2) was introduced to
investigate the inhomogeneity of the particle distribution. The dependence ofr (2) on a is similar to that ofD f ,p

on a. r (2) increases with time as a power law in the process of adjusting the particle distribution, and thenr (2)

tends to a stable equilibrium value.
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I. INTRODUCTION

During the last two decades, the collective motion of p
ticles in complex systems has attracted considerable inte
@1–3#. Recently, there has been increasing interest in
search into biological motions, such as the migration of fi
flocks of flying birds, animal grouping habits, and the colle
tive behavior of robots@4–7#. In these phenomena, the actio
of each individual is independent and random, but they t
to become cooperative and grouped. Great effort has b
put into modeling and simulating the collective behavior
elements, such as animals, insects, and robots@8–10#. Vicsek
et al. introduced a model to describe the self-ordered mot
of biological individuals, in which the velocity of a give
particle is related to those of the neighbor particles@8,9#.
Shimoyamaet al. proposed a mathematical model for th
collective motion in a system with mobile elements@10#. The
model shows several kinds of cluster motion, including c
lective rotation, chaos, and wandering. These dynam
models can give pictures of the cooperative motion for mu
particle systems, but the interactions between particles
somewhat unnatural.

Recently, other kinds of effort have been made to inv
tigate the motion behavior in the insect and animal worl
based on a random walk with interactions. Several kinds
random walk with interactions have been proposed, incl
ing the active walk, self-attracting walk~SATW!, ‘‘true’’
SATW, and so on@11–16#. In the SATW model, a random
walker jumps to the nearest neighbor sites with jump
probabilityp} exp(nu), wheren51 for already visited sites
andn50 for unvisited sites@12–14#. u stands for the attrac
tive interaction. Foru.0, the walk is attracted to its own
trajectory. The ‘‘true’’ SATW model is an extended versio
of the original SATW. This model involves the enhanceme
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of n with increase of visited times@14,15#. In our very recent
work, considering the character of biological walks, we p
sented a model of a random walk with memory enhancem
and decay, i.e., the memory information increases with v
ited times and decays with time@17#. To our knowledge, not
much attention has been paid to random walks with inter
tion in multiparticle systems@11,18#.

In this paper, we investigate the evolution of the partic
distribution with time and the dependence of the parti
distribution upon the memory decay exponent in multip
ticle systems, based on random walks with memory enhan
ment and decay. The results will be helpful to understand
motion behaviors of particles in complex systems with int
actions between the elements and the environment, suc
the behaviors of insects, animals, and the collective mo
of robots.

II. MODEL AND METHOD

The initial system is a square lattice, on which partic
are randomly placed. The movement of particles is limit
by the rules of random walk with memory enhancement a
decay@17#. According to this model, the movements of th
particles are controlled both by randomness and by
amount of information at the lattice sites. In other words,
particle walks randomly in nature and has a preference
moving to a place with larger amount of information, som
thing like the way an ant finds its way home by the sce
which it left. The whole of the information on the lattice ca
be described by a field. It is named the information fie
~potential!. For the ant, the information field presents t
distribution of the scent at all sites.

Monte Carlo~MC! simulations were used to investiga
the motion of the walker. The MC step is chosen as the ti
unit. In the walk, when a sitei is visited once the information
amountsi at the sitei will increase by 1. At the same time
the increased information attenuates exponentially with
non-negative memory decay exponenta. Therefore, at the
site i the information amountsi(t) at the timet is the accu-
d-
©2002 The American Physical Society01-1
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mulation of the remanent information at each time step.
have

si~ t !5 (
t051

t

ni~ t0!e2a(t2t0), ~1!

whereni(t0) is taken as 1~if the sitei was visited at timet0)
or 0 ~if the site i was not visited at timet0). Therefore, the
probabilitypi j with which the walker jumps from sitei to its
neighbor sitej depends on the difference between the inf
mation amount at the sitei and that at the sitej. It is ex-
pressed by

pi j } exp$b~sj2si !%, ~2!

where b is formulated as a Boltzmann factor. Since t
physical temperature does not play any role in this abst
model, we takeb51. Thus Eq.~2! can be rewritten as

pi j ~ t !} expH (
t051

t

@nj~ t0!2ni~ t0!#e2a(t2t0)J . ~3!

The above model established for a single particle is s
able for a multiparticle system, as we consider that the in
mation is contributed by all particles. Since there is an up
limit in sensitive volume for the smell of insects and anima
excessive smell is useless. For convenience we introdu
cutoff sm . The restriction ons can be described as

s~ t !<sm . ~4!

As the memory decay exponenta takes the limiting val-
ues, this model reduces to the corresponding random wa
a multiparticle system. For instance, whena50, the infor-
mation never declines and the present model reduces to
SATW of a multiparticle system, and whena→` the model
degenerates to pure random walks of multiple particles.

III. RESULTS AND DISCUSSION

Numerical simulations are performed on a finite squ
lattice of L3L. L is the length of the lattice. The length o
the square particles is chosen to be the unit of length.
average particle density is given byr05N/L2, whereN is
the total number of particles. In this work, attention is f
cused on the distribution pattern of the particle positions. T
average particle density is taken as small (r0,0.1). The size
of the square lattice is chosen to be 2003200. To reduce
fluctuations, all the results are taken from averaging over
independent runs.

Two-dimensional simulations are performed for vario
memory decay exponentsa, particle densitiesr0, and infor-
mation cutoffssm . Here,sm takes small values because t
initial stage of the simulation will become very long for larg
sm @12,14,15#.

We simulate the distribution of particles, that move
random walks with memory enhancement and decay for a
of a at the average particle densityr050.02, 0.04, and 0.08
Figure 1 shows the variation of the information distributi
and particle distribution with the memory decay exponena
01110
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at r050.02. The region with the remanent information
called the information region for short. In the simulations w
take s.1027 instead of s.0 as the standard to judg
whether the remanent information exists or not. In Fig. 1,
information region is symbolized by gray areas. It can

FIG. 1. Patterns of information distribution and particle dist
bution. The particles move by random walks with memory enhan
ment and decay. The average particle densityr050.02. The infor-
mation cutoff sm54. The time t523106. The memory decay
exponenta50.01 ~a!, 0.002~b!, and 0.0005~c!. The particles are
denoted by black points. The sites with the remanent informa
are plotted as gray areas.
1-2
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seen that for very smalla @see Fig. 1~a!# the information
decays only slightly, so the sites with remanent informat
are joined together. These sites form a single continuous
formation region and there are some regions without inf
mation inside. In this case, the particles disperse random
the continuous information region. With increasinga, the
information obviously decays; thus the sites with reman
information form separate information regions with vario
sizes and the particles are distributed randomly in them
shown in Fig. 1~b!. For largea @see Fig. 1~c!#, the informa-
tion decays seriously. In this case, the information regi
are very small in size and spread over the whole lattice.
particles spread randomly also.

The variations of the information distribution and partic
distribution with a at r050.04 and 0.08 are analogous
those atr050.02, but for the higher average particle dens
the particles in the information regions are denser and
single continuous information region starts to appear
smallera.

To describe the information distribution and particle d
tribution quantitatively, we calculated the fractal dimensio
of the information regionsD f ,i and those of the morpholog
of the particle distributionD f ,p . These are calculated by th
box-counting method@19,20#. Here, the fractal dimension
only in a sense characterizes the distribution of particle
sitions, and it does not imply that the particle distribution
scale invariant. Figures 2~a! and 2~b! plot D f ,i andD f ,p as a
function of the memory decay exponenta at various particle
densitiesr0. Figure 2 can be explained as follows. When t

FIG. 2. Fractal dimensions of the information regionsD f ,i ~a!
and of the particle distributionsD f ,p ~b! as a function of the
memory decay exponenta. The information cutoffsm54. The time
t523106. The average particle densityr050.08 ~open circles!,
0.04 ~full circles!, and 0.02~open squares!.
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decay exponenta50, the information does not decay. Th
information accounts for all sites will reachsm , and the
fractal dimension of the information regionD f ,i52.0, as ex-
pected@see Fig. 2~a!#. In this case, the motion of the particle
reduces to purely random walks on the whole square latt
Thus, the fractal dimension of the particle distributionD f ,p

takes a small value corresponding to that of the rando
distributed particles at given average particle density@see
Fig. 2~b!#, which is consistent with Ref.@19#. What will hap-
pen asa increases slightly? In this case, the informati
decays slightly and some regions without information a
inserted in the continuous information region@see Fig. 1~a!#.
Therefore, the fractal dimension of the information regi
D f ,i decreases, as shown in Fig. 2~a!. Since the particles are
located in the information region and the area of the inf
mation region is reduced, the average density of partic
increases. It is well known that increasing the average d
sity of particles brings about an increment of the fractal
mension of randomly placed particles@19#. Thus, we expect
that the fractal dimension characterizing the distribution
particle positionsD f ,p will increase. With increasinga the
area of the continuous information region is reduced, and
area and number of regions without information increase
D f ,i decreases. In this case,D f ,p is governed by two factors
On the one hand, the increment of the average density
particles makesD f ,p increase, and on the other hand t
damage to the information region in which the particles
contained leads to a reduction inD f ,p . Whena is close to a
certain valueap , the regions without information are con
nected with each other, and the information regions are se
rated from each other@see Fig. 1~b!#. Thus,D f ,p reaches the
maximum (D f ,p)max as seen in Fig. 2~b!. After that, asa
continues increasing, the number of the information regio
increases, the average area per information region beco
smaller and smaller, and the information regions tend tow
a random distribution. Therefore,D f ,i continues decreasing
Since the information regions in which the particles are
cated tend to a random distribution with increasinga, D f ,p

decreases too. Whena→`, the information attenuates s
fast that only the sites occupied by particles have the in
mation amount of one unit and the rest have no informati
The pattern in Fig. 1~c! is close to this situation. Thus, th
motion of particles is not affected by the surroundings an
corresponds to purely random walks. In this case, both
fractal dimensionsD f ,i andD f ,p have the same value as th
of randomly distributed particles on a two-dimensional l
tice. Figure 2 also shows thatD f ,i and D f ,p get larger with
increasingr0. The reason is that the larger density of pa
ticles causes a denser distribution of both information
gions and particles. This results in largerD f ,i andD f ,p @19#.
In addition, the peak positions in theD f ,i-a and D f ,p-a
curves shift in the direction of largea, along with increasing
r0.

To investigate the density nonuniformity of particle dist
butions quantitatively, we introduce the second moment
the densityr (2). Dividing the square lattice intoM cells with
the same size,r (2) is defined as
1-3
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r (2)5
1

M (
i 51

M

^r i2r0&
2, ~5!

wherer i is the particle density of thei th cell. The plots of
r (2) versusa for a set ofr0 are shown in Fig. 3. The relatio
of r (2) to a is very similar to that ofD f ,p to a. It can be
explained as follows.r (2) describes the density nonunifo
mity of the particle distribution in a system. Whena→`,
the information regions degenerate into the sites occupie
particles, so the distribution of particles is random, andr (2)

takes a small value depending onr0. With decreasinga, the
information regions get larger and larger, and the neighb
ing information regions join together. The particles are
cated in these information regions, so that the nonuniform
of the particle distribution is enhanced andr (2) increases. As
a continues decreasing, smaller information regions
joined up with each other and form larger information r
gions. Correspondingly,r (2) reaches its maximumrmax

(2) at
a5ap , and thenr (2) decreases. Whena is very small, all
the information regions are joined together and form a sin
continuous region which spreads all over the lattice, and
particles move randomly in the lattice. Thus,r (2) returns to a
small value ata50.

To investigate the effect of the information cutoffsm on
the distribution of particles, simulations withsm54 and 6
were performed. It was found that, assm increases from 4 to
6, rmax

(2) decreases from 5.431024 to 5.031024 for r0

50.02. Meanwhile,ap is reduced from 0.0025 to 0.0006
These results are easy to understand. For largersm , the at-
tracting ‘‘trap’’ is deeper, so it is more difficult for the pa
ticles to escape from their trap and join up with the neig
boring information regions@14,15#. This brings about a
decrease of the nonuniformity of the particle distributio
This means thatrmax

(2) is reduced assm increases. In addition
a smallera corresponds to weaker decay of information, a
the weaker decay is favorable for the particle escaping fr
the trap and for joining of neighboring information region
soap takes a smaller value for largersm to obtain the maxi-
mum nonuniformity of the particle distributionrmax

(2) .

FIG. 3. The second moment of the densityr (2) as a function of
the memory decay exponenta. The information cutoffsm54. The
time t523106. The average particle densityr050.08 ~open
circles!, 0.04 ~full circles!, and 0.02~open squares!.
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Now, we turn to evaluation of the transition point from th
dense phase to the dispersive one for the pattern of the
ticle distribution. Figures 1 and 2 show that as long as
decay exponent is larger than a certain small value~say
1023, for r050.02) the pattern is dense, and then it becom
dispersive asa increases a little. The transition takes place
a narrow range ofa. The transition pointac can be evalu-
ated roughly as follows. As a particle moves, an informat
region is generated around it. When the information regio
generated by near neighboring particles overlap enough,
pattern of the particle distribution is dense; otherwise it
dispersive. For the present systems with low particle den
(r0,0.1), the motion of each particle can be described
the SATW of a single particle in a first approximation. Th
visited sites in the SATW correspond to the information ge
erated by the particle. For the SATW, in the case ofu.uc
the cluster consisting of visited sites is a compact Eden
@20–23#. Thus, the average number of visited sites^S(t)&
scales with the time stept as @12–15#

^S~ t !&.At2/3 or t.@^S~ t !&/A#3/2, ~6!

where A is a proportionality constant. In this multiparticl
system the average area per particle isL2/N51/r0. Thus, the
average timetc during which the particle moves over th
area can be calculated using Eq.~6!, and we have

tc.~Ar0!23/2. ~7!

At the time tc , the information has decayed bye2atc. We
suppose that as the remanent information ise21 times less
than the initial information, the information regions gene
ated by near neighboring particles are separated, and the
tern of the particle distribution is dispersive. Therefore t
transition pointac can be expressed by

actc51 or ac5~Ar0!3/2, ~8!

whereA is somewhat related tosm and uc @14,15#. In this
case (sm54, and correspondinglyuc50.5), we simply take
A51. According to Eq. ~8!, we roughly evaluateac
50.003, 0.008, and 0.023, corresponding tor050.02, 0.04,
and 0.08, respectively. They are in accord with the simu
tion results@see Fig. 2~b!#.

Moreover, the evolution of the particle distribution wit
time was investigated for multiparticle systems with memo
enhancement and decay. Figure 4 shows the dependen
the second moment of the densityr (2) on timet for a system
with r050.02. It can be seen that the variation ofr (2) with t
follows a power law beforer (2) reaches the stable valu
rs

(2) . For a given value of the decay exponenta, with in-
creasing timer (2) varies from a small value~corresponding
to the random distribution! to the stable valuers

(2) ~corre-
sponding to the dynamic equilibrium distribution!. rs

(2) is
related tor0. The evolution timete , i.e., the time needed to
evolve from a random distribution to the equilibrium on
depends onr0 also. Asa rises,rs

(2) and te increase. The
difference in the evolution behaviors of the particle distrib
tion for systems with variousa stems from the degree o
overlap of information regions generated by near neighb
ing particles. Whena is very small, the overlapping part
1-4
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PATTERNS OF PARTICLE DISTRIBUTION IN . . . PHYSICAL REVIEW E66, 011101 ~2002!
generated by near neighboring particles are very large
the information regions generated by all particles alm
cover the lattice. In this case, the particle distributions bef
and after evolution are similar, so equilibrium is achiev
quickly and te is small. In contrast, whena is large, the
overlapping parts of the information regions are small a
the correlation among the particles is weak. In this case,
particle distributions before and after evolution are al
again andte is small too. At a certain value ofa5ap , the
overlap of the information regions generated by near ne
boring particles is just the right amount. It results in a co
tinuous information region, which is interspersed with no

FIG. 4. The evolution of the second moment of the densityr (2)

with time for several memory decay exponentsa. The information
cutoff sm54. The average particle densityr050.02.
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information regions. In this case, the motions of particles
correlated with each other and there exists a large differe
between the particle distributions before and after evoluti
It takes much time to achieve equilibrium, sote reaches a
maximum.

IV. CONCLUSION

In summary, for multiparticle systems with memory e
hancement and decay, as the memory decay exponenta de-
creases, the distribution of particles changes from a rand
dispersive pattern to a locally dense one, and then return
the random dispersive one. The change in the pattern co
from the fact that the motion of particles leaves informati
at visited sites and the particles prefer to visit the reme
bered sites at which information remains. Whena is very
large, the overlap of information regions generated by n
neighboring particles is very small, so the motion of ea
particle is almost like a pure random walk. Whena is very
small, all the information region generated by each parti
join together and spread all over the lattice. Thus, the p
ticles also randomly walk over the range of the lattice. A
certain value ofa, some of the information regions gene
ated by near neighboring particle overlap and some do
Therefore the particles are decentralized in the continu
information regions and the pattern of the particle distrib
tion is locally dense.
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