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Patterns of particle distribution in multiparticle systems by random walks
with memory enhancement and decay
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We investigate the pattern of particle distribution and its evolution with time in multiparticle systems using
the model of random walks with memory enhancement and decay. This model describes some biological
intelligent walks. With decrease in the memory decay exponetthe distribution of particles changes from a
random dispersive pattern to a locally dense one, and then returns to the random one. Correspondingly, the
fractal dimensionD¢ , characterizing the distribution of particle positions increases from a low value to a
maximum and then decreases to the low one again. This is determined by the degree of overlap of regions
consisting of sites with remanent information. The second moment of the dgi8ityvas introduced to
investigate the inhomogeneity of the particle distribution. The dependend® @i « is similar to that oDy
ona. p® increases with time as a power law in the process of adjusting the particle distribution, apéthen
tends to a stable equilibrium value.
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I. INTRODUCTION of nwith increase of visited timgsl4,15. In our very recent
work, considering the character of biological walks, we pre-
During the last two decades, the collective motion of par-sented a model of a random walk with memory enhancement
ticles in complex systems has attracted considerable intereand decay, i.e., the memory information increases with vis-
[1-3]. Recently, there has been increasing interest in reited times and decays with tinj&7]. To our knowledge, not
search into biological motions, such as the migration of fishmuch attention has been paid to random walks with interac-
flocks of flying birds, animal grouping habits, and the collec-tion in multiparticle systemfl1,18. _ .
tive behavior of robot§4—7]. In these phenomena, the action In th'$ paper, we investigate the evolution of the partl'cle
of each individual is independent and random, but they ten§iStribution with time and the dependence of the particle

to become cooperative and grouped. Great effort has beéﬂstribution upon the memory decay exponent in multipar-
put into modeling and simulating the collective behavior ofthIe systems, based on random walks with memory enhance-

elements, such as animals, insects, and rdi#st40]. Vicsek ment and decay. The results will be helpful to understand the

et al. introduced a model to describe the self-ordered motionrnOtion behaviors of particles in complex systems with inter-
; SN . . . . actions between the elements and the environment, such as
of biological individuals, in which the velocity of a given

e . . the behaviors of insects, animals, and the collective motion
particle is related to those of the neighbor partidi89].

) X of robots.
Shimoyamaet al. proposed a mathematical model for the
collective motion in a system with mobile elemeft§)]. The
model shows several kinds of cluster motion, including col-

lective rotation, chaos, and wandering. These dynamical The initial system is a square lattice, on which particles
models can give pictures of the cooperative motion for multi-are randomly placed. The movement of particles is limited
particle systems, but the interactions between particles argy the rules of random walk with memory enhancement and
somewhat unnatural. decay[17]. According to this model, the movements of the
Recently, other kinds of effort have been made to invesparticles are controlled both by randomness and by the
tigate the motion behavior in the insect and animal worldsamount of information at the lattice sites. In other words, the
based on a random walk with interactions. Several kinds oparticle walks randomly in nature and has a preference for
random walk with interactions have been proposed, includmoving to a place with larger amount of information, some-
ing the active walk, self-attracting walkSATW), “true” thing like the way an ant finds its way home by the scent
SATW, and so orf11-16. In the SATW model, a random which it left. The whole of the information on the lattice can
walker jumps to the nearest neighbor sites with jumpingbe described by a field. It is named the information field
probability pec exp(nu), wheren=1 for already visited sites (potentia). For the ant, the information field presents the
andn=0 for unvisited site$12—14. u stands for the attrac- distribution of the scent at all sites.
tive interaction. Foru>0, the walk is attracted to its own Monte Carlo(MC) simulations were used to investigate
trajectory. The “true” SATW model is an extended version the motion of the walker. The MC step is chosen as the time
of the original SATW. This model involves the enhancementunit. In the walk, when a siteis visited once the information
amounts; at the sitei will increase by 1. At the same time,
the increased information attenuates exponentially with a
* Author to whom correspondence should be addressed. Email agion-negative memory decay exponent Therefore, at the
dress: xwzou@whu.edu.cn sitei the information amoung;(t) at the timet is the accu-

IIl. MODEL AND METHOD
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mulation of the remanent information at each time step. We TR e,
have L -t W (a)
si(t)= 2 ni(tg)e” *(1), (N - e

tp=1 ot TN .
wheren;(t,) is taken as 1if the sitei was visited at time,) G . i
or O (if the sitei was not visited at timeé,). Therefore, the B £ -
probability p;; with which the walker jumps from siteto its 2= . ; T
neighbor sitg depends on the difference between the infor- & T s, TR
mation amount at the siteand that at the sitg. It is ex- T ma, W e
pressed by . | A e il

pij < exp{ (s~ s}, @ L B

where g is formulated as a Boltzmann factor. Since the e R
physical temperature does not play any role in this abstract gty o
model, we take3=1. Thus Eq.(2) can be rewritten as

t
py (1) exp{ 3 [t -n(tgle 9 (3) 2
07 Bln

The above model established for a single particle is suit-
able for a multiparticle system, as we consider that the infor-
mation is contributed by all particles. Since there is an upper
limit in sensitive volume for the smell of insects and animals,
excessive smell is useless. For convenience we introduce a ,
cutoff s,,. The restriction ors can be described as L\ T

S(t)<Sp. (4) o . -

As the memory decay exponeattakes the limiting val- . ——— —
ues, this model reduces to the corresponding random walk in e w ’ ek (C)
a multiparticle system. For instance, wher 0, the infor- ; R el e e
mation never declines and the present model reduces to the & 8. % e am
SATW of a multiparticle system, and when—« the model e T g 7 . = R D
degenerates to pure random walks of multiple particles. i Tl P e

Ill. RESULTS AND DISCUSSION e e

Numerical simulations are performed on a finite square L L VI .
lattice of LX L. L is the length of the lattice. The length of fp T Meln oy N e,
the square particles is chosen to be the unit of length. The T * 2%y * ot s
average particle density is given y=N/L2, whereN is £ - .' R "- < e %
the total number of particles. In this work, attention is fo- i -._I-' ¥ L L e WL g
cused on the distribution pattern of the particle positions. The A - A 7,
average particle density is taken as sma}j<€0.1). The size "1y ¢ O i gt
of the square lattice is chosen to be 2@D0. To reduce

fluctuations, all the results are taken from averaging over five FIG. 1. Patterns of information distribution and particle distri-
independent runs. bution. The particles move by random walks with memory enhance-

Two-dimensional simulations are performed for various™eNt and decay. The average particle dengity 0.02. The infor-

. i, . _ mation cutoff s,=4. The timet=2X 10°. The memory decay
memory decay exponenis, particle densitiepo, and infor exponente=0.01 (a), 0.002(b), and 0.0005c). The particles are
mation cutoffss,,. Here,s,, takes small values because the : : ) ) _
S . I - denoted by black points. The sites with the remanent information
initial stage of the simulation will become very long for large

are plotted as gray areas.
sy [12,14,15.

We simulate the distribution of particles, that move byat p,=0.02. The region with the remanent information is
random walks with memory enhancement and decay for a sefalled the information region for short. In the simulations we
of a at the average particle densjiy=0.02, 0.04, and 0.08. take s>10 ' instead ofs>0 as the standard to judge
Figure 1 shows the variation of the information distribution whether the remanent information exists or not. In Fig. 1, the
and particle distribution with the memory decay exponent information region is symbolized by gray areas. It can be
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decay exponen&r=0, the information does not decay. The
information accounss for all sites will reachs,,, and the
fractal dimension of the information regidd; ;=2.0, as ex-
pected see Fig. 2a)]. In this case, the motion of the particles
reduces to purely random walks on the whole square lattice.
Thus, the fractal dimension of the particle distributibn
takes a small value corresponding to that of the randomly
distributed particles at given average particle denfitye
Fig. 2(b)], which is consistent with Ref19]. What will hap-
oh0 ob2 oba obe ome om0 pen asa 'increases slightly? Irj this case, t.he information
a) a decays slightly and some regions without information are
inserted in the continuous information regimee Fig. 1a)].
Therefore, the fractal dimension of the information region
D¢ decreases, as shown in FidaR Since the particles are
located in the information region and the area of the infor-
121 1 mation region is reduced, the average density of particles
increases. It is well known that increasing the average den-
1.0 ] sity of particles brings about an increment of the fractal di-
mension of randomly placed particlgs9]. Thus, we expect
0.8 1 that the fractal dimension characterizing the distribution of
particle positionsD , will increase. With increasing the
area of the continuous information region is reduced, and the
area and number of regions without information increase, so
FIG. 2. Fractal dimensions of the information regidds; (8) Dy ; decreases. In this case; , is governed by two factors.
and of the particle distribution®; , (b) as a function of the On the one hand, the increment of the average density of
memory decay exponeat The information cutofs, =4. The time  particles makesDy , increase, and on the other hand the
t=2x10F. The average particle densipy,=0.08 (open circlel  jamage to the information region in which the particles are
0.04 (full circles), and 0.02(open squargs contained leads to a reductiony ,. Whena is close to a
. _ _ certain valuea,, the regions without information are con-
seen that for very smallr [see Fig. 1a)] the information  pected with each other, and the information regions are sepa-
decays only slightly, so the sites with remanent informatio_nrated from each othdsee Fig. 1b)]. Thus,D; , reaches the

are joined together. These sites form a single continuous Ny, aximum O .) as seen in Fig. (®). After that, asa
,p/ max . . ’

formation region and there are some regions without infor<, ntin e increasing, the number of the information regions

mation inside. In this case, the particles disperse randomly iMcreases. the average area per information region becomes

fche continuous _mformatlon re.glon. With ncreasiag the Pmaller and smaller, and the information regions tend toward
information obviously decays; thus the sites with remanen o . .
a random distribution. Therefor®y ; continues decreasing.

information form separate information regions with various _. ) . . . . .
sizes and the particles are distributed randomly in them, a§|nce the information regions n Wh'.Ch 'the par'tlcles are lo-
shown in Fig. 1b). For largea [see Fig. 1c)], the informa- cated tend to a random dlstr|but|9n with increasing Dt p
tion decays seriously. In this case, the information region§lécreases too. Whea—-c<, the information attenuates so
are very small in size and spread over the whole lattice. Th&St that only the sites occupied by particles have the infor-
particles spread randomly also. mation amount of one unit and the rest have no information.

The variations of the information distribution and particle The pattern in Fig. () is close to this situation. Thus, the
distribution with a at p,=0.04 and 0.08 are analogous to Motion of particles is not affected by the surroundings and it
those aip,=0.02, but for the higher average particle densitycorresponds to purely random walks. In this case, both the
the particles in the information regions are denser and th&actal dimension®; ; andDy , have the same value as that
single continuous information region starts to appear abf randomly distributed particles on a two-dimensional lat-
smallera. tice. Figure 2 also shows th&;; and Dy , get larger with

To describe the information distribution and particle dis-increasingpy. The reason is that the larger density of par-
tribution quantitatively, we calculated the fractal dimensionsticles causes a denser distribution of both information re-
of the information region® ; and those of the morphology gions and particles. This results in largey; andDy , [19].
of the particle distributioD¢ ,. These are calculated by the In addition, the peak positions in thB;-a and Dy ,-a
box-counting method19,20. Here, the fractal dimension curves shift in the direction of large, along with increasing
only in a sense characterizes the distribution of particle popg.
sitions, and it does not imply that the particle distribution is  To investigate the density nonuniformity of particle distri-
scale invariant. Figures(@ and 2b) plot D¢ ; andD¢ , as a  butions quantitatively, we introduce the second moment of
function of the memory decay exponentt various particle  the densityp®). Dividing the square lattice inthl cells with
densitiesp,. Figure 2 can be explained as follows. When thethe same sizey® is defined as

1.4

D fp

0.00 0.02 0.04 0.06 0.08 0.10
b) a
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Now, we turn to evaluation of the transition point from the
2.51 ] dense phase to the dispersive one for the pattern of the par-
ticle distribution. Figures 1 and 2 show that as long as the
207 decay exponent is larger than a certain small valsay
= 15 1073, for py=0.02) the pattern is dense, and then it becomes
& dispersive ag increases a little. The transition takes place in
= 4ol ] a narrow range ofr. The transition poini, can be evalu-
ated roughly as follows. As a particle moves, an information
0.5 ] region is generated around it. When the information regions
generated by near neighboring particles overlap enough, the
0.0 & - pattern of the particle distribution is dense; otherwise it is

000 002 004 006 008 0.10

o dispersive. For the present systems with low particle density

(pp<<0.1), the motion of each particle can be described by
FIG. 3. The second moment of the dengify) as a function of  the SATW of a single particle in a first approximation. The
the memory decay exponeat The information cutofs,=4. The  yisited sites in the SATW correspond to the information gen-
time t=2x1C°. The average particle densityo=0.08 (open  erated by the particle. For the SATW, in the caseuofu,
circles, 0.04(full circles), and 0.02(open squargs the cluster consisting of visited sites is a compact Eden one
[20—-23. Thus, the average number of visited si{e&t))
scales with the time stepas[12-15

1 M
p(Z):M izl <Pi_P0>Zy 5 <S(t)>2At2/3 or t2[<8(t)>/A]3/2, (6)

where A is a proportionality constant. In this multiparticle
system the average area per particle3N = 1/p,. Thus, the
average timet, during which the particle moves over this
area can be calculated using Ef), and we have

wherep; is the particle density of th&h cell. The plots of
p@ versusa for a set ofp, are shown in Fig. 3. The relation
of p® to a is very similar to that ofD; , to a. It can be
explained as followsp® describes the density nonunifor- t.=(Apg) 2 (7)
mity of the particle distribution in a system. When— o,
the information regions degenerate into the sites occupied bt the timet., the information has decayed kg “'c. We
particles, so the distribution of particles is random, afd  Suppose that as the remanent informatior is times less
takes a small value depending pg With decreasingy, the than the initial |.nform§1t|on, the information regions gener-
information regions get larger and larger, and the neighborated by near neighboring particles are separated, and the pat-
ing information regions join together. The particles are lo-tern of the particle distribution is dispersive. Therefore the
cated in these information regions, so that the nonuniformityransition pointa, can be expressed by
of the particle distribut?on iS enhancgd apid i.ncreasejs. As ate=1 or ag=(Apg)? (®)
a continues decreasing, smaller information regions are
joined up with each other and form larger information re-where A is somewhat related ts,, and u. [14,15. In this
gions. Correspondinglyy® reaches its maximump{?) at  case é,=4, and correspondingly.=0.5), we simply take
a=a,, and thenp®) decreases. Whea is very small, all A=1. According to Eg.(8), we roughly evaluatea,
the information regions are joined together and form a single= 0.003, 0.008, and 0.023, correspondingfe=0.02, 0.04,
continuous region which spreads all over the lattice, and thand 0.08, respectively. They are in accord with the simula-
particles move randomly in the lattice. Thpé?) returns to a  tion results[see Fig. 2b)].
small value ata=0. Moreover, the evolution of the particle distribution with

To investigate the effect of the information cutasff, on  time was investigated for multiparticle systems with memory
the distribution of particles, simulations wity,=4 and 6 enhancement and decay. Figure 4 shows the dependence of
were performed. It was found that, 8s increases from 4 to the second moment of the densjt{?’ on timet for a system
6, pl?), decreases from 5:41074 to 5.0<10° 4 for p,  With po=0.02. It can be seen that the variationpéf) with t
=0.02. Meanwhile,,, is reduced from 0.0025 to 0.0006. follows a power law beforep® reaches the stable value
These results are easy to understand. For lasgerthe at-  p. For a given value of the decay exponentwith in-
tracting “trap” is deeper, so it is more difficult for the par- creasing timep(® varies from a small valuécorresponding
ticles to escape from their trap and join up with the neigh-to the random distributionto the stable valug'? (corre-
boring information regiong14,15. This brings about a sponding to the dynamic equilibrium distributionp(® is
decrease of the nonuniformity of the particle distribution.related top,. The evolution time,, i.e., the time needed to
This means thap{2) is reduced asy, increases. In addition, evolve from a random distribution to the equilibrium one,
a smallera corresponds to weaker decay of information, anddepends orp, also. As « rises,p(sz) andt increase. The
the weaker decay is favorable for the particle escaping frongifference in the evolution behaviors of the particle distribu-
the trap and for joining of neighboring information regions, tion for systems with variousr stems from the degree of
S0 a, takes a smaller value for largsy, to obtain the maxi- overlap of information regions generated by near neighbor-
mum nonuniformity of the particle distributi (ng. ing particles. Wherx is very small, the overlapping parts
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8.2 - - - information regions. In this case, the motions of particles are

e (=001 ..l"_ correlated with each other and there exists a large difference
= p=0.002 . between the particle distributions before and after evolution.
o p=0.001 I It takes much time to achieve equilibrium, soreaches a
P .f:dpj Lo | maximum.
_ [ ]
“a . IV. CONCLUSION
o0
< ¥ O eer e eosmen e In summary, for multiparticle systems with memory en-
- o & 000® 0000w hancement and decay, as the memory decay expeneet
07 . | creases, the distribution of particles changes from a random
s 0 dispersive pattern to a locally dense one, and then returns to
T T T the random dispersive one. The change in the pattern comes
log t from the fact that the motion of particles leaves information

at visited sites and the particles prefer to visit the remem-
FIG. 4. The evolution of the second moment of the dengi®y ~ bered sites at which information remains. Whenis very
with time for several memory decay exponentsThe information  large, the overlap of information regions generated by near
cutoff s,,= 4. The average particle densijty=0.02. neighboring particles is very small, so the motion of each
particle is almost like a pure random walk. Whens very

generated by near neighboring particles are very large an%mall, all the information region generated by each particle

the information regions generated by all particles almosfIn together and spread all over the lattice. Thus, the par-

cover the lattice. In this case, the particle distributions befor icles also randomly walk over the range of the lattice. At a

and after evolution are similar, so equilibrium is achievedcerain value Ofo." Some of the_ information regions gener-
quickly andt, is small. In contrast, whem is large, the ated by near neighboring particle overlap and some do not.

overlapping parts of the information regions are small andTherefore the particles are decentralized in the continuous

the correlation among the particles is weak. In this case, thgﬁormatlon regions and the pattern of the particle distribu-

particle distributions before and after evolution are alikelon 1S locally dense.
again and, is small too. At a certain value af=«,, the
overlap of the information regions generated by near neigh-
boring particles is just the right amount. It results in a con- This work was supported by the National Natural Science
tinuous information region, which is interspersed with non-Foundation of China.
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